Facilitating neural dynamics for delay compensation: A road to predictive neural dynamics?

نویسندگان

  • Jaerock Kwon
  • Yoonsuck Choe
چکیده

Goal-directed behavior is a hallmark of cognition. An important prerequisite to goal-directed behavior is that of prediction. In order to establish a goal and devise a plan, one needs to see into the future and predict possible future events. Our earlier work has suggested that compensation mechanisms for neuronal transmission delay may have led to a preliminary form of prediction. In that work, facilitating neuronal dynamics was found to be effective in overcoming delay (the Facilitating Activation Network model, or FAN). The extrapolative property of the delay compensation mechanism can be considered as prediction for incoming signals (predicting the present based on the past). The previous FAN model turns out to have a limitation especially when longer delay needs to be compensated, which requires higher facilitation rates than FAN's normal range. We derived an improved facilitating dynamics at the neuronal level to overcome this limitation. In this paper, we tested our proposed approach in controllers for 2D pole balancing, where the new approach was shown to perform better than the previous FAN model. Next, we investigated the differential utilization of facilitating dynamics in sensory vs. motor neurons and found that motor neurons utilize the facilitating dynamics more than the sensory neurons. These findings are expected to help us better understand the role of facilitating dynamics in delay compensation, and its potential development into prediction, a necessary condition for goal-directed behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FACILITATORY NEURAL DYNAMICS FOR PREDICTIVE EXTRAPOLATION A Dissertation by HEE

Facilitatory Neural Dynamics for Predictive Extrapolation. (August 2006) Heejin Lim, B.S., Keimyung University; M.S., Keimyung University Chair of Advisory Committee: Yoonsuck Choe Neural conduction delay is a serious issue for organisms that need to act in real time. Perceptual phenomena such as the flash-lag effect (FLE) suggest that the nervous system may have mechanisms to compensate for de...

متن کامل

Robust Adaptive Neural Control of the Blood Glucose for Type 1 Diabetic Patients in Presence of Meals

In this paper, the blood glucose control for type 1 diabetic patients in the presence of model uncertainties and uncertain meals is considered. In order to present an efficient control approach, it is assumed that the dynamics describe the mechanism of the blood glucose regulation in type 1 diabetic patients are completely unknown. Hence, based on the universal approximation property of the rad...

متن کامل

System Dynamics and Artificial Neural Network Integration: A Tool to Valuate the Level of Job Satisfaction in Services

Job Satisfaction (JS) plays important role as a competitive advantage in organizations especially in helth industry. Recruitment and retention of human resources are persistent problems associated with this field. Most of the researchs have focused on the job satisfaction factors and few of researches have noticed about its effects on productivity. However, little researchs have focused on the ...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2009